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(=2 ﬁ ‘In this paper (part I) we establish a theory for stretching and bending of laminated
12N @) elastic plates in which the laminae are different isotropic linearly elastic materials.
O The theory gives exact solutions of the three-dimensional elasticity equations that
= satisfy all the interface traction and displacement continuity conditions, with no

traction on the lateral surfaces; the only restriction is that edge boundary conditions
can be satisfied only in an average manner, rather than point by point. The method,
which is based on a generalization of Michell’s exact plane stress theory, yields exact
solutions for each lamina. These solutions are generated in a very straightforward
manner by solutions of the approximate two-dimensional classical equations "of
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566 P. V.KAPRIELIAN, T. G. ROGERS AND A. J. M. SPENCER

laminate theory and contain sufficient arbitrary constants to enable all the continuity
and lateral surface boundary conditions to be satisfied. The values of the constants
depend only on the lamina thicknesses and the elastic constants. Thus, for a given
laminate and for any boundary-value problem, it is necessary only to solve the
appropriate two-dimensional plane problem, and the corresponding exact three-.
dimensional laminate solution follows by straightforward substitutions. The two-
dimensional solution may be derived by any of the available methods, including
numerical methods. An important feature of the theory is that it determines the
interfacial shearing tractions, as well as the in-plane stress components. The procedure

Y 4

< is illustrated by applying the theory to three problems mvolvmg stretching and

— bending of laminated plates containing circular holes.

N

O : 1. INTRODUCTION

Ei 5 The use of laminated plates as structural members is not new; the use of plywood is an obvious
T O example of a familiar application. However, the stress and deformation analysis of laminated
=wu plates has acquired greatly increased interest in recent years because many new and advanced

materials, such as fibre-reinforced composite materials, are frequently and conveniently used
in laminated form. This is particularly true of applications in the aerospace industries, where
it is important to take maximum advantage of the high specific strength and stiffness, with
consequent mass-saving ability, which the new materials make available.

The most commonly used approach to stress analysis of elastic laminated plates is known as
classical laminate theory, and is described by, for example, Christensen (1979). In this theory
the heterogeneous laminated plate is replaced by an equivalent plate of the same overall
geometry and with elastic constants which are appropriate weighted averages of the elastic
constants of the laminae. This theory is usually found to give satisfactory results for the
deflection of the mid-surface of the plate, and for the average in-plane displacement and stress
components. However, there is a need for quantitative assessment of the errors involved, and
it is certainly the case that, because it is based on an averaging procedure, classical laminate
theory can yield only limited information about the through-thickness distribution of stress and
deformation, and no information at all about the interlaminar shear forces. In a laminate, the
in-plane stress and strain components are often subject to very large variations through the
thickness, and so the use of averages can conceal many significant effects in the individual
laminae. Furthermore, the interlaminar shear tractions have an important influence on the
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— onset of delamination and consequent failure of the laminate, so knowledge of these tractions
; — is also important. We therefore require a more refined theory of laminates than is provided by
ol classical laminate theory.

e g Several such theories have been put forward. In one such class of theories (termed higher-
= Q) _order theories), such as those proposed by Whitney & Pagano (1970), Whitney (1972), Nelson
E 9) & Lorch (1974) and Lo et al. (1977), displacemeht components are approximated through the

plate thickness by polynomials in Z, the coordinate normal to the plate. This approach seems
to us to be inherently unsatisfactory in that it fails to take into account the essential fact that
the displacement gradients with respect to Z are usually discontinuous at the interlaminar
interfaces. Consequently, except in elementary cases, these theories fail to satisfy shear traction
continuity conditions at the interfaces. Comparison with the exact elasticity solutions for some
simple problems (Bonser 1984) confirms that the theory of Lo et al. (1977) often gives poor
agreement with the exact solutions. :
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THEORY OF LAMINATED ELASTIC PLATES. I 567

A more satisfactory theory has been proposed by Srinivas (1973). In this theory the in-plane
displacement components are assumed to be piecewise linear in Z, with discontinuous
derivatives with respect to Z at the interlaminar interfaces. In test problems Bonser (1984)
shows that this theory also gives results which are often substantially in error. In particular, this
theory does not, in general, admit continuity of the shear traction at interlaminar interfaces,
nor does it satisfy zero shear traction conditions on the lateral surfaces. ‘

- A further theory is due to Pagano (1978). In this the in-plane stress components are taken
to be piecewise linear in Z. This theory admits continuity of displacement and traction at the
interfaces, but equilibrium equations are satisfied only in integrated form for each lamina. In
test problems this theory also gives results which depart considerably from those given by exact
three-dimensional solutions. We conclude that none of the existing laminate theories known to
us can be regarded as providing a satisfactory means of analysing the variation of both stress
and deformation throughout the thickness of a laminate, nor of determlnmg the interfacial
shear tractions between laminae. ' :

In this paper we present an elasticity theory for isotropic laminated plates which, in a very
simple manner, yields exact solutions of the three-dimensional elasticity equations, satisfies all
traction and displacement continuity conditions at the interlaminar interfaces, and satisfies
zero traction conditions on the lateral surfaces, all for a laminate composed of any number of
laminae. The only respect in which any form of approximation is involved is one which is
common to all plate theories in that edge boundary conditions are specified in terms of the
average through-thickness displacement or of the stress and moment resultants, rather than by
pointwise specification of edge displacement or traction. Thus, according to Saint-Venant’s
principle, the solutions are valid everywhere except in edge boundary layers whose width is of
the order of the plate thickness.

In this paper (part I) the analysis is restncted to laminates whose laminae are of different
isotropic elastic materials. Although such configurations are of interest in connection with, for
example, sandwich plates, they clearly fail to address the main practical problem in this area,
which is the analysis of laminates whose constituent layers are anisotropic. In particular, interest
centres on the case in which the laminae are differently oriented sheets of uniaxially fibre-
reinforced materials, which may be modelled as transversely isotropic or orthotropic laminae.
However, the analysis presented here for isotropic laminae gives strong indications of the
manner in which we should proceed with the analysis of anisotropic laminae, and such an
analysis forms the subject of part II (in preparation). The solutions, being exact, are also of
obvious importance as tests of numerical procedures for the stress analysis of laminates.

The theory that we present is in the spirit of the exact plane stress theory for stretching and
bending of moderately thick homogeneous plates which was formulated by Michell (1900) and
described in some detail by Love (1927, articles 300-304). Further developments of this theory
have been described by Lur’e (1964) and by Reiss & Locke (1961). Our theory may be
regarded -as an extension, to heterogeneous laminated media, of the exact plane stress
theory. : :

In §2 we consider the stress and deformation in a single layer of the laminate. After a brief
outline of some necessary results in the two-dimensional classical thin-plate theory, we derive
a generalization of the exact solutions given by Love (1927) for an homogeneous layer. This
generalization comprises an exact solution of the three-dimensional elasticity equations; it

contains a number of disposable arbitrary constants and does not require the shear tractions
48-2
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on the lateral surfaces of the layer to vanish. The solution decomposes into two independent
solutions (the stretching solution and the bending solution) which we treat separately. Our
method of derivation differs from that of Love (192%7) but has features in common with a
method used by Reiss & Locke (1961). An essential feature of the solution is that, to establish
an exact three-dimensional solution, it is necessary only to solve the two-dimensional thin-plate
equations; any solution of the two-dimensional equations immediately generates, by simple
substitution, a solution of the three-dimensional equations which contains a number of
arbitrary constants. In the more restricted context of Michell’s solutions, this result is implicit

— in the account glven by Love (1927), but does not seem to have been explicitly stated or

;5 S exploited. ~

ol The classical laminate theory mentioned above is outlined in §3. In particular we deﬁne here
= the equivalent plate for a laminate. This is a homogeneous plate, of the same overall dimensions
— q p g plate,

= as the laminate, and with elastic constants which are appropriate averages of the elastic

= O constants of the laminae. Classical laminate theory in effect applies thin-plate theory to the

b y PP P y

equivalent plate. :

In §4 we establish the exact laminate theory. We use the two-dimensional classical laminate
theory, based on the equivalent plate, to generate exact three-dimensional solutions in each
layer of the laminate. These solutions contain several arbitrary constants for each layer; it is
found that these suffice to satisfy all the interface traction and displacement continuity con-
ditions, and vanishing traction conditions on the lateral surfaces. Thus ultimately, and in a
very direct and straightforward manner, we find that any solution of the two-dimensional
classical laminate theory equations generates a corresponding full, exact three-dimensional
elasticity solution for the entire laminate. There is no restriction on the number of laminae. The
values of the arbitrary constants do not depend on the problem under consideration, but only
on the geometrical and elastic properties of the laminate, so that for a given laminate they need
be evaluated once only. The underlying solution of the classical laminate theory equations may
be obtained by any of the various methods available for solving plane elastic problems,
including numerical methods. ' : :

Some illustrative applications of the theory are described in §5 These concern infinite plates
containing circular traction-free or clamped holes, in uniaxial tension and in bending. Section 6
contains d1scussxon of various aspects of the theory.

PHILOSOPHICAL
TRANSACTIONS
OF

Y o

—

S ~ 2. DEFORMATION AND STRESS IN A SINGLE LAYER

e g _ (a) Notation and general theory : _

E O We consider a layer of uniform thickness of isotropic, linearly elastic material. Initially we
— 8 use rectangular cartesian coordinates X, ¥, Z such that Z = 0 coincides with the mid-plane of

the layer. Referred to these coordinates, the components of displacement are denoted by U, V,
W, and the components of the symmetric stress tensor ¢ by

vy ve | o ‘ (21)
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The Lamé elastic constants are denoted by A and #s SO that the stress—strain relations can be
expressed as

0l [A4+22 A '/\ 11U« ,
oul=| A 2A+2 2 vyl - (22)
0. | A A A+2u| (W, '
[0,.] Ve +Wy
Ou| =p Wx+Uz|, (23)
Tzy Uy+ V.x_

where commas denote partial differentiation with respect to the suffix variables.

We require solutions for which the normal stress o, is zero at the lateral surfaces of the layer.
Because we shall also require the possibility of non-zero shear tractions at these surfaces, then
plane-stress or generalized plane-stress conditions (e.g. Love 1927) cannot be assumed. Instead,
we seek solutions for which we assume only that : -

0,=0 (2.4)
holds everywhere in the layer. In this case
/\(Ux+V ) (A+2m) W, =0, (2.5)
and (2.2) reduces to ,
o A2 X ][U X]
= : : 2.6
F- bl e

where (following the notation of Love (1927, p. 208))
X =20/ (A+2p).

Thus A’ ‘and g are effective elastic moduli for the case o,, = 0. We also introduce the dimen-
sionless elastic constant '

7 =2X/2p. @
The constant # is related to Poisson’s ratio v by :
7=v/(1-v). (2.8)
Thus (2.6) may be re-written as
Uxx]=2 ["]+1 Kl ][U’X] = | 29
’ [‘Tw- H 7 +1]LVy] (2.9)
and (2.5) as ; .
WU x+Vy)+W,=0. (2.10)

~ With o, =0, and assuming body forces to be zero, the equations of equilibrium reduce

to i : . :
xzx+azy Y+o'zzz=0’v : )

nyx"' 1,Y+a'l‘,,z—0 o o (2.11)

Uzz,X+ayz,Y =0.


http://rsta.royalsocietypublishing.org/

yA \
I e

_;:

NI
olm
~ =
)
=0
f=w

PHILOSOPHICAL
TRANSACTIONS
OF

/%

_{

P
O H
=
= O
= O
= uw

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

570 P. V.XAPRIELIAN, T. G. ROGERS AND A. J. M: SPENCER

(6) Classical thin-plate theory

We shall seek certain exact solutions of the three-dimensional equations (2.9)— (2 11) How-
ever, first it is necessary to outlme some results of classical thin-plate theory, which is an
approximate theory. :

We consider a plate of thickness 2/ whose mid-plane lies in the plane Z = 0. Whereas
variations of the field variables in the X and Y directions may be considered in terms of a typical
in-plane linear dimension a, which is usually defined by a given boundary-value problem,
variations with respect to Z are naturally related to H, where normally H < a. Accordingly we
mtroduce non-dlmensmnal variables x, y, z, u, v and w, defined through

x=X/a, y=Y/a, z—Z/H,} |
u=Ula, v="V/a, w=W/a. (2.12)

We also introduce the dimensionless constant
¢=Hla. (2.13)

In thin plate theory the scaled dlsplacement components u(x Y,z t) and v(:t, y,z) are ap-
proximated as

u(x:y) Z) ~ i(xﬂ/) —ez?(x,y),z,} (2'14)
v(x,y,2) ~U(x,y) — €z (%, 9), 45
where #(x,y) and #(x,y) are the through-thickness averages of u and v
1 : o :
(@59 505,90} = 5 || a2 (53, 2t (2.15)
-1 !

and @(x,y) = w(x,y,0) is the transverse displacement of the middle surface. Geometrically
(2.14) state that plane sections that are initially normal to the middle surface remain plane and
normal to the middle surface. It is also assumed that the lateral surfaces of the plate are free
from traction. ‘

Stress resultants are defined by

(Nygs Nyyy Ny N N,,) = H f (Oz2s Tyys Tys Ty ) dz. (2.16)

By substituting (2.14) into the stress—strain relations and integrating fromz = —1 to z = 1, we
obtain L .

N, [2(7+1) 2 0 Z,

Ny,l|l= 2uHy 27 2(+1) 0 v, ; (2.17)

N,, 0 0 |z, ,+7, ,

1* 4

where Ry =3 | W@p@}dz, i=X/2% (2.18)

Thus A’ and )/ represent average values of A and  through the plate thickness. In the case of
a homogeneous plate, A’ = X', ji = u and therefore 7 = 7. '

By integrating the first two equilibrium equations from z = —1 to z = 1, and imposing the
condition that the lateral surfaces are traction-free, we obtain

Npypo+Ny,=0, N, ,+N,,=0.

Y,z

(2.19)
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Then by substltutlng (2.17) into (2.19) it follows that : '
2(7;+1)A —Q "'_o 2(7;+1)A +Q, =0, (2.20)
where SRR . A= T,4T, Q-—v',—um (:2.2>1)
By eliminating 4 and  in turn from (é.ZO); ‘\&e: 6btain ' .
o Wm0, VR =0 (2.22)
\,«.r‘her_‘e',Vf2 ieiqréschts yi'he iwéﬁiqi?nsional léélaciah operatof‘! v | , “ _
B | | = oot 422 f (2.23)
From (2.20), (2.21) and (2. 22) it follows that N
Vu-—() V4v—0 N '(2.24)

~'The bending moments are defined as

-1

3 (M,,,MW,M y) f (O',z,o'w,a'zy)ZdZ H2 f (o'wcrw,a )z?dz. - (2.25)

Hence from (2.3), (2.9) and (2.14) we obtam‘

M, 27+1) 27 0] [ -
M, | =—%iH® 2 2(4+1) 0] | @, o (2.26)
M, L0 -0 1 2wzy
where N O\ =§- {A’(z) /L(Z)}szz, F=X /2/4 SRR (2.27)
For a homogeneous plate, X=X, fi= p and 7 = 4. By multiplying (2.11), , by z, mtegfaﬁng
from z=—1 to z=1, and applying tracuon-free boundary conditions at z=%1, we
obtam
e(Myz,0+ M,y ) —HN,, = 0, (Mxy ~+M,, ) —HN,, =0. (2.28)
Also, by integrating (2.11), from z =—1to z'= 1, we ha’.ve _ ; '
N, z+ Nyey =0. | (2.29)
Hence, from (2.28) and (2.29), ‘ ;o
Mzz,zz+2sz zy+Muy yy 0’ ! ! = (230)
and it follows from (2.26) that S '
V4- =0 (2.31)

Equatnons (2.20) and (2.31) are the basic equatlons of classical thin-plate theory. When £,
7 and @ are determined, the stress resultants N,,, N,, and N,, are determined by (2.17) and
the bending moments M, M, and M,, by (2.26). Typlcal boundary condmons are that at
the edge of a plate with outward unit normal n= (n,, » 0) we may spcc1fy # and one from each
of the following pairs: S o :
(@) nmn,@+n, 7 or 6) n, Nn+n Nzy, . R
(¢) =mn,g+n,w or (d n N, +n,N,, t o (2.32)
z 'y or _,(f)nM+nM .
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Here (a) and (¢) correspond to the specification of the mean in-plane edge displacement
components; (b) and (d) to the specification of the in-plane components of edge force; (e) to
the specification of the slope of the mid-surface; and (f) to the specification of the bending
moments applied to the edge of the plate. Other types.of boundary conditions may also arise;
see, for example, Timoshenko & Woinowsky-Krieger (1959).

(¢) Analysis of stress and deformation in a homogeneous layer

In this section we consider the stress and deformation in a single layer of homogeneous
material, so that A’ and u are constants within the layer. We make a distinction between a
homogeneous layer and a plate, which may be an assemblage of a number of layers of different
materials. Accordingly, we denote the uniform thickness of the layer by 2% and, within the
layer, we introduce non-dimensional variables x, Y, Z, u, v and w by

x=X/a, y=TY/a, z=2Z/h, }

u=Ufa, v="V/a, w= W/a, (2-33)

where, as before, a is a typical in-plane linear dimension. The plaﬁe Z =0 (or z=0) is chosen
to coincide with the mid-plane of the layer, and the lateral surfaces of the layer are z= +1.
We also define the dimensionless parameter € as

£=h/a. | (2.34)

Although in practice € will usually be small compared with unity, the analysis that follows is
not an asymptotic analysis, and is valid for any value of €.

- In terms of the non-dimensional variables, the governing equations (2.3) and (2.9)—(2.10)
take the forms

[0,..] - [2(p+1) 29 O] =, )
oul=pl 29 2(+1)0 v, |,
| T2y | 0 0 1 u'y+?'f (2.35)
'crn] _ [e?:lu.z+ w',]’
o). e, 4w, )
D t0,)+E =0, (2.36)
and the equations of equilibrium (2.11) become
Ozt Opyy+€lo,, , =0,
Copat Oy gt 8710, 5 =0, (2.37)
| ze',+&uz’y = 0.)
By substituting (2.35) into (2.37) we obtain o
ROt @y 1)y ) (B L,) = O,
0,2+ 21+ 1) w5y + 2+ 1) v} + (0 + 8w ) =0, (2.38)

E(w,xz+w,yy) + (u,zi+v.y5) = O
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In addition, we express (2.36) as - C - '
7€ +v ) +w,=0. : ‘ (2.39)

Our objective is to determine exact solutions of (2.38) and (2.39), but for convenience in
formulating the theory, and with a view to further developments in part II, we suppose initially
that in the layer the displacement can be expressed formally by a power series in €, as _

: u(x,y,z‘,¢§)‘ © un(x"y’z) B |
{v(x,y»f,g)} =3 é"{vn(x,y,f)}. (2.40)
w(x,y,z,€)) "0 [\w,(x,9,Z) )
We also adopt the notations R o - o
’ A=+, Q,=v, ,—u,,. ‘ (24

We now substitute (2.40) into (2.38) and (2 39) and cquatc cocfﬁc1ents of powcrs of € The
terms independent of € give »

wo.é = 0, Uy, zz = 0, vo,2z=0, Uy, ozt Vo, yz = 0. (2.42)
Thcse are satisfied if we choose %;, v, and W, to be independent of Z. In particular, they are
satisfied if 1y, vy and w, are identified with a solution of the equations of classical thin-plate
theory. Accordingly we adopt classical plate theory as a first approximation of the three-

dimensional equations (without specifying yet the elastic constants A" and g which are to be
used), so that uy, v, and w, satisfy

Vidy =0, VZQ =0, Viu,= 0. (2.43)
_The terms of order € in the cxpansmn give
W, z+"YA = 0 U, zz+wo 2z =0,

Uyt Wy =0, oy zz+”1 yz+V Wy = 0

A solution of these, with (2.42), is
u, =—(zZ+B)) Wo,z» ”1 (Z+Bl) Yo, > w, =—(z+3$,) 77“0» (2.44)

wherc B, and S, are constants. This is not the most. gcncral solutlon of the cquatlons, but has
sufficient gcnerahty for our purposes.

For n 2 2, the terms of order €" give . v
) Bve . ) ?An-l + Wy z= Q’

2(77+ 1) An-z x_gn—2 y+wn-l zz‘+un,‘if = 0’

(2.45
2("7+1) n- 2y+gn—2 z+wn—1 yt+vn zi'_Oa ( )
) V n-1+An = 0
For n = 2, and using (2.43) and (2.44), these have a solution
[uz] =—(EZ*+S. z+S'){(v+2)[ ] [ Q°'”]},
v R 4o,] L Q0,, (2.46)
Vol. 324. A

49
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where S,, §; and B, are a further set of arbitrary constants. For n = 3, by (2.43) and (2.46),
(2.45) yields a solution

[8]= e ey @2 [T] w=o (2.47)
vs—s-2l'v8‘ 477 I 3 . |

where B, and B, are further constants.
It can then be verified that, for n > 4, with 4, v, and w, satisfying (2.43), (2.45) is satisfied
by

4

uh=0,~ vn_=0’ wn;O’ n>4. (2.48)

Consequently the series (2.40) terminates atn = 3 for 1 and v and at n = 2 for w. By collecting
the terms of the series we have, from (2.44), (2.46) and (2.47), the complete solution

=Ll )

—B3A24+S5,2+S5,) { (n+2) [jo'z] +[_iny]}

0,y
 8/1583 4 1D 22 = : V2w0 2| "
+& G2 +2B1 27+ B2+ By) (1+2) | g2, 7|5 (2.49)
‘ , \% W, . A
w = wy(x,y) —en(z+S,) 4o +€9(32*+ B, z+ B,) Vu,. v (250)

It may be verified by direct substitution that (2.49) and (2.50) are an exact closed form solution
of the full three-dimensional equations (2.38) and (2.39) provided that 4, and €2, are harmonic
functions, and w, satisfies the biharmonic equation  that is, provided that u,, v, and w, represent
a solution of equations (2.20) and (2.31) of classical plate theory for any constant values (not
necessarily the actual values) of the elastic constants 4 and . Thus by solving the thin-plate
equations it is possible immediately to extend the solution to give an exact solution of the three-
dimensional elasticity equations. The arbitrary constants S, S,, S,, B, B,, B, and B, allow
some freedom in the specification of boundary conditions at the lateral surfaces.

If the lateral surfaces Z = 11 of the layer were to be free from shear traction, so that plane
stress conditions applied, then both ¢, and o, would be zero on these surfaces. However, we
intend in §4 to apply the solution to laminated plates, in which the surfaces of a typical layer
will not be traction-free, so we do not impose any restrictions on o, and 7,,, and in general
allow ¢, and o, to be non-zero at the lateral surfaces. ' o '

The solution derived in-this section is a generalization of solutions originally due to Michell
(1900) and described in Love (1927, articles 300-304). Michell assumed that, in addition to
0,, = 0, the stress components 7, and o, are zero throughout the plate; this leads to a special
case of the solution given here. Michell’s method of derivation is very different from ours, but
it may be extended to give the same results. A third method of derivation is to proceed
iteratively, by rearranging (2.38) and (2.39) as iteration formulae and adopting solutions of
(2.43) as the first iteration. The iterative process terminates in the exact solution given
above. ‘ _

The solution (2.49) and (2.50) can be decomposed into the sum of two independent solutions,
which we term the stretching and the bending solutions respectively. In the stretching solution
we have w, = 0; in the bending solution we have ¥, = 0, v, = 0. The two solutions may of
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course be superposed. In anticipation of this decomposition, the arbitrary constants have been
denoted so that §;, S, and §; relate to the stretching solution, and B,, B,, B, and B, relate to
the bending solution. Henceforth we deal with the two solutions separately.

(d) The stretc/zing solution for a layer

In this section we cons1der the stretching solution, for which (2.49) and (2.50) give the
displacement _ _

I R (e e | N
w=—en(z+S,) 4g, o

and the corresponding stress is

1 Oz AO 2”“-’ ' )
;; O-yy = 277 AO + 21)0’1/ : —ER(%EQ+S25+S3)
Oy 0 Ug,yt 0,5 ,
Ao,zz _290.111
x12+2) | 4oy |+| 220 |}, (2.52)
Ao,zy Qo,xx_‘Qo,yy
1[0‘] 402] -Q
- é“{2( +1)z+ 89+ S,(p+2 }[ ] €(z+S. [ °"’],
ulo,, 1D ZES S} 4 | EERS) | o
©0,=0. ]

We note that if it is required that generalized plane stress conditions hold, so that both o,
and o, are zero at the surfaces Z= * 1, then

2 +1) 4y ,— 2, =0, 2(9+1)4,,+2,,=0, ©(2.53)
and hence ‘ 8, =8,

Thus in this case, by comparing with (2.20), we see that 4, and », are solutions of the classical
thin-plate equations for the layer. If furthermore the mid-plane z = 0 is to remain in the plane
of symmetry then §; = 0 and hence §, = 0. If finally we require the average displacement to
coincide with that of classical thin plate theory, then S; = —§, and the solution is reduced to
the exact plane stress solution given in Love (1927, article 301). :

Obviously the solution (2.51) and (2.52) is considerably more general than that given by
~ Love, not only because it includes the additional arbitrary constants S, S, and Sy, but also

because in it , and v, are requlred only to satlsfy the equanons :

Vid, =0, A4°Q,=0. - o (254)

These are necessary consequenccs of (2.53), but are less restrictive. ‘This additional geh'erality
is crucial to the solutions for laminated plates which follow in §4.

We note also that a solution of (2.54) (or of (2.53)), which involve only the two independent
variables x and y, immediately generates an exact solution (2.51) and (2.52) of the full three-
dimensional plate equations.

The solution (2.51) and (2.52) does not allow the pointwise specification of the displacement,
49-2
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or of the edge traction, at the edges of the layer However, it is possible to specify average values
of z and v, or the norinal and .tangential components of the. resultant edge traction, namely

"n,N,+n,N, and n, N, +n,N,. (2.55)

(é) The bending solution fbr a layer

" In the bending solutlon puttlng u, =0 and v, = 0 into (2. 49) and (2. 50) glves the dis-
placement as : : :

N +Baz+3)(7,+2>[v2goz],

v v Vi, , (2.56)
w = wy(x,y) +9(32°+ B, z+ B,) Vu,.
The corresponding stress is ' ,
1 Oz Vzwo Wy, 22 3
= | %w | = —2e(z+B,) {7 ]| V:w, | +| wo,yu
” o'xy : 0 _wo,zy
‘ 4 o Vzwo,u-
+_253(%23+§B +Baz+B)(77+2) Vg |,
| | i Vzwo,xy (2.57)
. : " 2 -
10| et 48,2 (4 1)+ 1B, + (1+2) 3}[‘7 Yoz,
1“ o-yz O.y-
o,=0, J
where | | . V‘u)0,=0. - g . - (‘2_.58)

. Ifagain we require the lateral surface tractions to be zero, as in generalized plane stress, then
(2.57) gives that

B, =0, 9+149B,+(9+2)B;=0.
The further requirement that the displacement of the mid-plane coincides with that given by
classical thin plate theory then imposes the conditions that

B, =0, B—-O

thereby recovermg the exact solutlon given by Love (1927, artlcle 304) for plane stress bendmg
of moderately thick plates. _ V

. We note that in this case also an exact three—dlmensmnal solutlon (2. 56 (2.57) is generated
by any solution of a two-dimensional equation, namely the biharmonic equation (2.58), which
is the equation of classical thin plate theory for bending by edge couples. '

Again, the solution (2.57) does not allow pointwise specification of the edge displacement or
traction, but it is possible to specify at the edge of the plate the value of the mid-surface
dlsplacement w(x,y,0) and elther its normal derivative 7 n w(x, Y, ) +n w(x, ¥,0) ,or the edge
bending moment n, M, .+n, M
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3 CLASSICAL LAMINATE THEORY
(a) Laminate geometry

~ We now consider laminated plates comprised of 2N + 1 homogeneous laminae, each of which
is of an isotropic linearly elastic material. In general the laminae are of different materials,
with differing elastic constants. For convemence we confine our attention to laminates which
are symmetric about the mid- plane Z =0, so that the ith lamina above the mid-plane is
identical in material and thickness to the ith lamina below the mid-plane. For such a symmetric
laminate the stretching and bending solutions uncouple. The procedure we shall follow can
be extended to include asymmetric laminates, but in this case ‘the stretching and bendlng
deformations cannot be separated, and the algebralc complexity of the analysis is increased.
Any quantity related to the ith lamina will be identified by the index i. The layers are
numbered according to the scheme shown in figure 1, where the layer i = 0 contains the mid-

Z=H
=t Z=H,
v 1=N_ . 1
,zN..__._l : .
z=0 | ith lamina 70
zi=-1 — : i

d-pl
- zo=0 e i=0 mi pane

Figure 1. Laminate geometry and notation for symmetric lay-up about Z = 0.

plane of the laminated plate and the layer i = N is the layer adjacent to the upper surface. The
ith layer has uniform thickness 24, and Lamé elastic constants A, and . We also use the elastic
constants A; and 7,, defined as

A= 2 A2, = Xi/2 (3.1)

The overall lammate thickness is denoted by 2H, so that

. N /
H=h+2Xh, (3.2)
i=1
Also, we denote by H, the distance from the mld plane of the plate to the mid- plane of lamina
1, 50 that S . - o
H, =0, H1=k0+h1, H,=ho+22]h,+k1£ (1—2 3,...,N). (33)
- i oo

In particular, Hy = H —Iz S ;

We use scaled variables x, y, z, #, v and w as in (2. 12), where now H is the overall laminate
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half-thickness, and Z = 0 coincides with the mid-plane of the laminated plate. In addition we
introduce scaled local coordinates z, in the z-direction in each lamina, defined by

z,=2,/h, Z,=Z-H, (1=0,1,2,...,N). (3.4)
Thus z, = =0 is the mid-plane of layer i, and z, = +1 are the upper and lower surfaces of layer

i. In addition we use the parameter € defined i in (2.13) and also denote

&=hfa (i=0,1,...,N). - | (3.5)

It then follows from (3.2) that ~ |
€E=¢€+22¢,. (3.6)

i=1
() The equwalent [)late

In class1cal lamlnate theory, as described by, for example, Chrlstensen (1979), the 1nhomo-
geneous laminated plate is replaced by a homogeneous plate which we term the equivalent
plate. The equivalent plate has the same overall geometry as the laminate; in particular, it has
thickness 2H. For stretching deformations, the mechanical properties of the equivalent plate
are such that for homogeneous deformations under specified edge tractions, the mean in-plane
displacements of the laminate and the equivalent plate coincide. For bending deformations, the
elastic constants of the equivalent plate are chosen so that in pure bending under given edge
moment, the mid-plane deflections of the laminate and the equivalent plate coincide. Thus, for
isotropic materials, the elastic constants of the equivalent plate are given by (2.18) for stretching
deformations and by (2.27) for bending deformations. Hence, in general, different elastic
constants are required for the two deformation modes. :

For the laminate geometry described in §34, the elastic constants of the equwalcnt plate for
stretching are, from (2.18),

R S R 1
i

We also define =X/2i ~ " (3.8)

In general, the quantities associated with stretching deformations of the equivalent plate will
be denoted by superposed circumflexes. Thus the through-thickness average in-plane dis-
placement (i, #) (scaled as in (2.12)) of the equivalent plate is governed by the equations

20i+1)4,-Q ,=0, 2j+1)4 ,+8 =0, (3.9)

(3.10)

where 4 and £ are harmomc functions. Similarly the m-plane stress resultants for the cqulvalent
plate are :

N, 26i+1) 27 o[ 4,
Rol=2Hi| 27 26+v0|| 4, | (3.11)
Nyl 0 0 1lld +7,
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Quantities associated with bending deformations of the equivalent plate will be denoted by
superposed tildes. From (2.27), the elastic constants for bending of the equivalent plate are

Sl frmenr-msn]. e
and we also define F=X/2% (3.13)

The deflection @ (scaled as in (2.12)) of the mid-surface of the _cquivalent,plate‘ is governed by

the biharmonic equation ‘ o
Vi =0, ‘ (3.14)

and the bending moments in the equivalent plate are given by

-~

7 2+1) 27 o|[d,,
M, |=—3aH?| 27 2(j+1) O], (3.15)
M,, 0 0 112 ,,

4. EXACT THEORY FOR LAMINATES

‘We now present a theory in which the three-dimensional field equations and interface
conditions are exactly satisfied. The only limitation is that in this theory (as in all other plate
theories) edge boundary conditions can be satisfied only in an average fashion, rather than

point by point. (a) Stretching deformations

We first consider the stress and deformation in stretching deformations of the lammate For
these, we seek solutions in which, in each lamina, the displacement is of the form (2 51), with
associated stress of the form (2.52), and with & Z, 4 and p replaced by ¢,, z,, 7, and g, respectively.
The constants S,, S, and S, are in general different in each lamina. Their values in the ith
lamina are denoted by ${, S and S

The functions u,(x, y) and vy(x,y) are at our disposal, subject only to their satisfying (2.54).
Because classical laminate theory appears to give satisfactory results for the average values of
u and v, we choose ,(, y) and v,(x,) to.be the same in each layer, and to be the displacement
components #(x,y) and §(x,y), under given boundary conditions, of the equivalent plate, and
so they are solutions of (3.9) and (3.10). Thus, in layer ¢, the displacement and stress are
assumed to have the forms '

u® i) ‘ ‘ 4.1 [-Q :
(o] = [atesezrsofon |2+ 5]} @
» ' w(‘)f“etﬂc(zt+sg‘))2a~ | o “ (4.2)
1 O";‘; 212,1 A: FA:,zz _25}.31/
- o‘f,‘}, =| 20, [+29,|4 —el32+ 8Pz, +8P){ 2(n,+2) ‘Lm) + 29'1% , (4.3)
Mle®| |i,+7d, 0 | | 4,,] [2.-2,
1[e] _ 0) 0 4] 0) -0 ‘y‘
;‘ 0.;0 6,{2(77,+l)z,+S§ 7+ S5 ("7¢+2)} _et(zl+S( ) o E (4.4)
¢4 ,y_ 'z

o9 = 0. (4.5)
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Here 4 and .Q satlsfy (3. 9), are related to ¢ and ¢ by (3.10) and are functions of x and y

only. , . . O
By using (3.9) and (3 10), ( ), ( ) and (4.4) can be Written as .

~

[ i) _ ap 2 0 (@) . [4 z|
NON i —e; (32 + 5% Zt"'fsa ) (,—27) j‘ ’ (4.6)
Y . ,
AR o [buatdn 4
;‘— 0-;2 =I—2 6-” +lz(1i‘+;lﬂ) é’”+&uy —26,2(-;-2,+S“)zi+s()) (77t ‘ 2’” 4 vy |° (4 7)
tlo® G oy 0 4,
1foz]_ @) S‘" Y 4, '
,u,, o.(t) : €¢{2( )zl+S1 "7¢+ 2 (ﬂi—27)} A"y ) (4.8)
where ¢,,, 6,, and 6, ‘denote the stress associated with»the équiValeht plate. These expressions

represent an exact solution in.each layer provided that 4 and # satisfy (3.9) and (3.10).

For stretching solutions of symmetric laminates  and v are even functions of z, and w is an
odd function of z, so it is sufficient to consider the region z > 0. This involves the layers labelled
i=0, 1,..., N. Hence we havc at dur disposal 3N+3 c_ohstants §P (=1,2,83;i=0,1,...,

The followmg conditions have to be sansﬁcd

(i) Symmetry conditions at z,=0:

w® =0, ¢®=0, ¢®=0, at z=0. 4.9

_ (i) Contmulty of dlsplacement and traction at each interface betwcen layer z—l at
Z, —land layerzatz,—'—l (z—l 2,...,N): '

WD Zg® D Z g0 gD Zy® L (410)

G-1) _ -1) () o : R
ol =0l ofV =0l (4.11)

'No continuity conditions on ¢, are required, because o,, = 0 throughout the lammate We
leave aside for now the traction condition on the upper surface z = 1. ’ :

Becduse of the form of the solution (4.1)—(4.4), the above conditions all reduce to conditions
on the constants $?. The number of the conditions (4.9)—(4.11) exceeds the number of available
constants. However, the conditions are not all independent. From (4.8) it is clear that the
conditions for o,, = 0 and o, = 0 at z = 0 are identical, and that the conditions for o, and
o, to be continuous at the interface between layers i —1 and ¢ are also identical. Furthermore,
from (4.6), the conditions for continuity of # and v at the interface between layers i—1 and ¢
are identical too. Thus (4.9)—(4.11) yield 3N+ 2 independent conditions on the 3N +3 con-
stants S, ' C ~ o

From (4 2) and (4 8), the condluons (4.9) are satisfied if

SP =0, S®=0. (4.12)
At the interface between layers i—1 and i, continuity of w gives, from (4.2),

€1 ﬂi—l(S(li-l) +1) = g7,(5P—1), (4.13)
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and continuity of o, and o, gives, from (4.8),

iy €1 SYV 4 (-, — 2) S(‘_1)+2(77t— )} = !‘(et{’]ts( +( 2’7)S“)_2( nHh

whereas continuity of u and v gives, from (4.6), ‘ - (414

| S HEESE) (1 =20) = SO H-S) -2, (415)
Each of (4.13), (4.14) and (4.15) is a recurrence relation of the form

teatbs=a—b, (=1,2...8), (4.16)

where, in (4.13), e = e‘mSi), by = €73 | ’ (4.17)

in (4.14) [L‘G‘{’)]‘S( +(p,—27) 8P}, b, = 2ﬂ‘€‘(77‘ 7);. (4.18‘)

and in (4.15) =€ (SP+3) (9, —24), b,=€*SP(y —21]). (4.19)

By replacing ¢ by 7 in (4. 16), and summmg thc resulting rclatlons from r=1tor= i, we
obtain -

a‘ = ao+ z (b,_1+br)l = ao+bo+2 Z b,+b‘o (4.20)

r=1 r=1

Application of this solution in turn to (4.17), (4.18) and (4.19), and the use of (4.12) gives

6‘ ﬂi S(‘) z (er-l ”r—l +€ nr) ' (421)
i€ SO + (3, —24) SP} = 2 21 Wr sy =) + €, (1, — 7)) (4.22)

€ (S +3) (,—27) = €3(S3 +3) (no—24) + 21 {e7-1'Sy ™0 (0,1 —24) + €7 S (9, —247)},
- (4.23)
all for i =1,2;...,N.
‘Equations (4.21) and (4.22) determine S{” and Sy explicitly. Equation (4.23) then deter-
mines S (1= 1,2,..., N) in terms of S®. Thus S remains the only undetermined constant.

We now consider thc shear traction on the upper surface z =1 (or zy, = 1), which is given
by (4.8) with i = N. From (4.22), with ¢ = N, and using (3.7) and (3.8), we have

Uy en{2(ny— 7?) +5 S+ (5 —27) S‘zN)}

. A N - A A
= 2”’N €x (ﬂN - 77) +2 z {:ur—l €1 (ﬂr—l _"7) + 4, er(ﬂr _/'7)}

r=1

.N
= 2 €,(No—17) +4 X p, €,(1,—17)

re=1

N
= 2{ﬂoewo+2 z ﬂfer%} 2"7{/‘060"‘2 YA }

r=1 re=1
= 2(jief —jeit) = 0.

50 Vol. 324. A »
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Hence, from (4.8) (with i = N), the expressions (4.22) imply that
0,.,=0, 0,=0, (4.24)

at the lateral surface z= 1. Thus it follows that the lateral surfaces of the laminate are
necessarily traction-free, and it is neither necessary nor possible to impose additional boundary
conditions on these surfaces. ,

To assign the remaining undetermined constant S§”, we may impose one further condition.
A possible choice is to require that the mean in-plane displacement components #(x,y) and
#(x,y) coincide with the mean displacement components #(x, y) and #(x,y) for the equivalent
plate. From (4.6) by integrating through the plate thickness from z =—1 to z =1, we have

-~

[‘E] = [’;]—%{eo( +80) (g _‘2ﬁ)+2§e?(%+sg>) (,,,_2,7)}[21:;]. 4(4.25)

v i=1

Hence (z,7) = (4, 7) if we choose

&E+S3) (o —277) +2 2 & G+59) (n,—27) = 0. (4.26)
i=1
From (4.23), it then follows that S§” can be expressed in terms of the previously determined
constants Sy by the relation

e N N
ec?(3 + SO) (no—21) = %{63(%-277) +23 ei’(m—2ﬁ)}

r=1

N r ’
=23 X eder SEV (o —20) +€f SP (1, —24)}.  (4.27)
r=1 i=1
This is the natural choice of the condition to determine S{” when boundary conditions on the
mean in-plane displacement are prescribed at the edge of the plate.

Alternatively, we may require that the stress resultants N,,, N,,, N, coincide with the

corresponding stress resultants N, Nw, Nzy for the equivalent plate. Equations (2.16) and
(4.7) show that

.NII‘ JYzz 4H A:,II

Ny [ = |0 | =S o5 0= 20) + 2 Z 50 =2} 4, 629

Nzy Nzy - . A.xu
Hence (N,,,N,,,N,,) = (N,,, NW,N y) if

N
€ ko5 +55) (70— 21) +2 T € 3+ 55°) (n,—24) = 0. (4.29)

i=1

From (3.7) and (4.23) it follows that in this case S§” is given in terms of the previously
determined constants S by the relation

ec? A+ S0) (70— 27) = %{ezuo(n —24)+2 2 & 1l 2n>}

-2 Z Zepndel, S(zi_l) (N1 —217)) + €} S‘z‘) (n,—27)}. (4.30)

r=1 =1

This is the natural way to specify S if traction boundary conditions at the edge of the plate
are prescribed. '
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We observe that the two conditions (4.27) and (4.30) coincide only when the shear moduli
., are all the same. We note that in (4.22)—(4.30) the constants Sy’ and S occur only in
conjunction with the factors (7,—27). Thus the numerical evaluation of the constants is
simplified by introducing new constants T, T, defined as

T = (n—2i) P, TP = (1= 20) SY.

When $¢, § and S are determined by (4.12), (4.21)—(4.23) and either (4.27) or (4.30),
then equations (4.2) and (4.5)—(4.8) comprise exact three-dimensional solutions for stretching
deformations of the heterogeneous laminated plate, with zero tractions on the lateral surfaces.
To construct explicit solutions of this form, it is necessary to solve only the two-dimensional
equations (3.9) and (3.10) for the homogeneous equivalent plate. We note that the constants
S, SP and SY depend only on the thicknesses and elastic constants of the laminae, and not
on any particular boundary-value problem considered. '

A quantity of interest, about which classical laminate theory gives no mformatlon, is the
interfacial shear stress between laminae. If we denote by 7, the shear traction between layers
i—1 and i, then 7, has x and y components a'“’ and o), evaluated at z, = —1. Hence, from
(4.8),

| 7= —ped = 200,—0) + S0+ P (1,— 27)} grad 4. (431)

Therefore, from (4.22),
-1 R
1, = —2{uo€0(n0—7) +2 X €, p,(n,— )} grad 4. (4.32)

r=1

If 9, = 7 in each layer (that is, 1f the material in each layer has the same value of Poisson’s
ratio), then 7, = 0 at each interface. It also follows from (4.32) that the jump in the shear
traction from the lower surface to the upper surface of layer i is

Ty — T = —4p,6,(n,—7) grad 4.

The sign of this jump is governed by the sign of 7,—#. Thus the magnitude of 7, can be strongly
influenced by the choice of stacking sequence for the laminate.

(b) Bending deformations

For bending deformations of the laminate we seek solutions in which, in each lamina, the
displacement is of the form (2.56) and the associated stress is of the form (2.57),with €, Z, 5 and
4 replaced by €, z,, 9, and pu, respectively. The values of the constants B,, B,, B; and B, for the
ith layer are denoted by B, BY, B® and B{ respectively. The function w,(x,y) is chosen to
be the displacement #i(x, y), under suitable boundary conditions, of the equivalent plate, and
so satisfies the biharmonic equation (3.14). Thus in layer ¢ the displacement and stress have the
forms

u(t) I . ; Vz ~ .
[40] = —etert B[ 2| ettt +18021+ Bzt BO) (1D Gugs], 439
Y- .

w® = & +eln,(22 + BPz,+ BY) V1, (4.34)

50-2
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o] via] [,
| | =~ 2edat B 0 | Vi 4 |5,
o 0 . o
Vi ,,
+2€?(szt %B?)ztz +B§,‘)zi+Bf:)) (7,+2) Vzw,w , (4.35)
Vzu”)_zy
1[0 ® ® B® Vi
E o.(i) —51{2(271"'3 zt) (n;+1)+79,B; +('0 +2) B }V2~ s (4.36)
. yz
o"" =0. o L _ » (4.37)

As before, for symmetric laminates it is sufficient to consider the region z > 0; for bending
deformations, w is an even function of z and « and v are odd functions of z. Hence we require
conditions to determine 4(N+ 1) constants BY (« = 1,2,3,4;i=0,1,2,..., N). The available
conditions are: : '

" (i) Symmetry conditions at z = 0:

4® = 0, 2@ = 0, o9 =0, a(°> =0, 69=0, atz,=0.

(ii) Continuity of displacement and traction at each interface between layer i—1 at
z,,=1and layeriatz,=—1 (=1,2,...,N):

gD = O D = O - O “ 38)
(-1 — ;O 4D = g (-1 — .
Oy = Oy Oy Oy Oz = Oz »
(iif) Zero traction on the lateral boundary of the laminate:
(N — (N) — N — 0 - ‘
o =0, =0, 0°=0, atzy=1. , (4.39)

As for stretching deformations, the conditions are not all independent. Inspection of (4.33)-
(4.36) shows that (i)—(iii) imply just 4N+ 3 independent conditions on the constants BY,
leaving us once again with one disposable constant.

From (4.33) and (4.35), conditions (i) are satisfied if

BP=0, BP=0. | (4.40)
Continuity of  and v at the interfaces is assured if, from (4.33),
€y (14 BE™D) = (- 1+BY), (4.41)

€1 GBIV + BTV +BE) (1,14 2) = € (—5+3BY —BY + BY) (1,+2).  (4.42)
From (4.34), cdntiriqity of w requirés that ‘ v
€171 (3 +B“_1)+B“_l)) =€ ’h( —B{+BY), (4.43)

and continuity of the interfacial shear stress gives, from (4.36),

Hy ei— {2 E+B{™) (1,4 +1)+7,, B¢V 4 (9,2, +2) BEV}Y

= mei{2(—BY) (n+1) +9,BY + (. + 2) B} (4.44)
The cc_)ndmon (iii) gives

2+B") (gn+1) +75 B + (yn +2) B = 0. - (4.45)
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Each of equations (4.41)—(4.44) is a-recurrence relation of the form (4.16) with solutlon of
the form (4.20). The solution of (4.40); and (4.41) determines the B{ as :

-1
e‘ (‘)_ 2 (6,_1+6,) —60+6¢+226,
: r=1 oo el :
Hence, from (3.3) and (3.5), kB = H,. ' (4.46)
By solving'the recurrence relatidn '(4.43):, we obt‘a'in -
et By) = e§no(at BY)+ B (a1 BV e, BY), (4.47)
o1

which determines BY (i = i,2, ..., N) in terms of B® and the already evaluated constants
B{. Similarly, from (4.44), the B’ are given in terms of B", By, BY’ and By’ by

wmed(n+ 1)+, BY + (1, + 2) Bg)} =Ml eg{("?o +1) +94 B + (1, +2) B}

+2 2 {2y €r_y (7,1 +1) BU ™V +p, €2 (n,+1) By},  (4.48)

re=1

By solving (4.42) and using (4.40), we determine By in terms of B, B{’ and BY as

€ (1,+2) (%B“’+B“’) E{ef- (1-1+2) G+B{) +€(1,+2) & +B"’)} (4 49)

.or=1 .

This leaves BY and B‘°’ to be determined. One relatlon between these constants can be
deduced from (4.45). By setting = N in (4.48), and using (4.45), we obtain

2uy €% (y+1) B + po €6{(9o+ 1) +9, BY + (15 + 2) B}

+22 {#r-1€71 (91 +1) BV + pr, €] (n, +1) B"’} =0. (4.50)

r=1.
For the second relation between B{Y and B{”, we may impose one further condition. A natural
choice is to specify that w = @ at z = 0; that is, to require that the mid-surface deflection
coincides with the deflection of the equlvalent plate. From (4. 34) this requirement is assured

if . |
! _B“”—O | o | (4.51)

This would appear to be the most sultable choice if edge boundary condltlons are imposed on
the deflection. : ; » ' ~ : . :

Alternatively, we may spec1fy that the resultant bendlng moments in the lamlnated plate
coincide with the resultant bending moments in the equivalent plate. This choice is natural if
edge moments are specified as boundary conditions. The bending moments are defined by
(2.25) and, from (3.12), (3.13) and (4.35), are given by

M, [M., T
M,, | =| M, |+ 200 6§ i (J5+3B5) (10+2)
M, | |M, o

zy zy.
N w.zz
- +23 €} puh{(F5+3BY) b+ GBY +2BY) H} (1,4 2)]| Vi 4y |, (4.52)
=1 Viw
' Y
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where M,,, M, , and M are bending moments for the equivalent platc and are given by
(3.15). Thus in thlS case the required additional condition is

N v .
Ho€okio(F5+3B5") (1o +2) +2 X € o h{(fs+3B3) b+ (3BY +2BY) H} (9, +2) = 0. (4.53)
i=1

When the constants BY” have been determined, (4.33)—(4.36) give exact three-dimensional
solutions for bending deformations of the laminated plate, provided only that i satisfies the °
biharmonic equation in two dimensions.

From (4.36), the difference between 7, and 7,,;, where 7, denotes the interlaminar shear
traction at the interface between layer i—1 and layer i, is

Ty — T = 4€; u, B (,+1) grad V*s,
- =4a*h H p,(g,+1) grad V%q.

Hence, because the faces of the laminate are free from traction, we have

¥ .
T, =—4 Z h,H, p,(y,+ 1) grad V2. (4.54)

It follows that 7, has its greatest magmtudc ati=1, that is, at the interfaces closcst to the mid-
plane of the plate.
It now follows from (4.36), (4.46) and (4.54) that the shear stress components o3 and o)
can be expressed explicitly as

1 0';2 )2 _ 2H _ 4 H Vﬂw’z
M[,«)]—{et(zﬁl)[ 1+ 7 ]( +1) m ,246"1 ﬂr(ﬂ,+l)}[vzu~}’y]. (4.55)

v 5. ExAMPLEs ,
(a) Stretching of a laminated plate containing a circular hole

As an illustration of the theory described in §4a, we consider a laminated plate containing
a traction-free circular hole and subjected to uniaxial tension at infinity. The solution of this
problem for a homogeneous plate is well known (see, for example, Timoshenko & Goodier
1951). This solution is chosen as the equivalent plate solution. In terms of plane polar
coordinates (r,0) with origin at the centre of the hole, the solution is

i, = £;{—77L+—1—+[R+4(’7+ 1 -41] cos20},

44127+1 "R 2/+1 R R
P 2 1 1 &1
u"=—:1;{R+27;+1R Rs} sm20

where a, and ad, denote the components of displacement in the r and € directions respectively,
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a is the radius of the hole, R = r/a, and P is the magnitude of the uniaxial tension applied in
the @ = 0 direction as r— 00. The corresponding stress components are

é 1 4 3 )
lP{l R2+[1 —Ez"i"ﬁz:l cos 20},
Goo = 3P 1+i— .1+—3:- cos 26 | (5.2)
66 2 Rz R4 ’ } .
G,p=—1P|1+= 3 sin 26.
R R )
In terms of #, and i, we have
~  0d, ‘, 1 0d,
4= 3R +21+% %0 (5.3)
which, for the displacement (5.1), gives
~ P 2 |
S YT 1 it~ 20 . .4
vt L &4

“The stress and displacement in the laminate are then given by substituting (5.4) into (4.2)
and (4.6)—(4.8), and then transforming into components referred to plane polar coordinates,

u(‘) " ﬁ" 26? P 0)) 1) cos 20
[ "] [ug] Rh@i+1) (bt + S92+ (= 21) | oo | (6:5)
o — . Gt"lt(zt ) [ ]
w oA+ 1) 1— 2cos20
oy 1 G,y -&rr'*'o" 9
A 7]‘_’7] A A
0';2 == 0g| +7707 Oyt 0g
. 29+1) |
lo0] #ls, A2+ 1) 0
200 _ O cos 26
+1§;4'S?é._’2_?)})(gz,+S“’z,+S“)) —cos26 |, (5.6)
7 sin 26
1 O'g) — 2€¢P 0 " cos 26
E[Gﬁé’] ~BAEiT D) O —0) 2+ 0,80+ S0 (0= 20} | og | (5.7)

 To determine the constants # and 7 of the equivalent plate it is necessary to specify the
geometrical and mechanical properties of the laminate. For illustration we consider the simplest
case of a laminate comprised of three layers each of equal thickness 2k, the inner layer having
elastic constants A, #y, and the two outer layers having elastic constants Aj, ,. The analysis
is readily extended to plates with an arbitrary number of laminae, but for five or more laminae
the algebraic expressions for the constants are complicated and are not meaningful, and it
becomes better to proceed by numerical evaluation of the constants. This can be done in a
straightforward way by using the recurrence relations of §4.
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- For the three-layer laminate, we have from (3.1)

To=Xo/200 = Xi/20, (68
from (3.5) and (3.6) with N=1 o _ .
» e°'=:‘el = hofa, €= 3hy/a, (5.9)
and from (3.7) and (3. 8) B ' o
rony e At2d
/ A _1 A
It remains to determine the constants ${, S, S, S‘l“, S and S, From (4.12)
s =0, =0, N X )
and from (4.21)-(4.23), with r=1, o |
NSY = o+, (5.12)
pa (0 —29) 82 = 2u6(M0— 1) — 2 (N0 =7, + 27)), (5.13)
(1, —27) $ = (770—2ﬁ) Sg‘) +%("Io —7y) + (9, —277) SP. (5.14)

Because stress boundary' conditions are prescrlbed at r=a, we adopt (4.29) or (4.30) to
determine S§°. From (4.29) S .

Po(SS +3) (0= 277)+2ﬂ1(S‘”+a) (n— 271) . (5.15)
Hence, from (5.14) and (5.15),

(o +2u,) (mo— 2i) P = — 24, (m, —27?) S(zl) =y (o — 7]1) f%{ﬂq(ﬂo _'2"7) +2p, (1, —2"?)},
(5.16)

(o +201) (1, —277) S = po (9, —247) S +z“o( o= M)~ l{l‘o("?o“2"'i)j"' 2p, (7 _277)}

In the equivalent plate solution, the deviation of the stress from uniform tension decays as
R From (5.5)—(5.7) we see that in the exact solution o,, and ,, decay as R™%, while the
correction to the equivalent plate displacement also decays as R™%, and the corrections to the
in-plane stress components decay as R™. From (5.7) with i =0, z, = 1, it follows that the
magnitude of the shear traction at the interfaces is the magnitude of

r = deg po(mo—1) P
! Ru(29+1) ~
As Poisson’s ratio v, varies from 0 to 3, so 7, varies from 0 to 1. The extreme values of 7, occur

when (a) 9o =0, 9, =1, 4 = 3u,/f, and (b) No=1, 7, =0, 7 = jue/i. The corresponding
valucs of 7, are

(5.17)

| Seol‘o.“lp R v Seoﬂo.“lp o |
“Aa : = . : ' 5.18)
O TRy Y REa o) n
We observe that 7, is mdependent of 6. - «
The terms proportional to €} in (5.5) give the addltlonal m-plane dlsplacement of the exact
theory compared with the classical laminate theory. The magnitude of this additional dis-
placement is independent of 6. Similarly the terms proportional to €} in (5.6) represent the
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corrections to the in-plane stress components due to replacing classical laminate theory by the
exact theory. We note, however, that no correction is needed for o,, + 0.

(b) Bending of a laminated plane containing a circular hole

As an illustration of the bending solutions described in §44, we again consider a plate -
containing a circular hole of radius a, but now suppose it to be bent by couples remote from
the hole such that M,,~M, M,~0 as R-w, (5.19)

where we use the same plane polar coordinate system (7, 0) and scaled coordinate R = r/a as
in §5a. The boundary of the hole is supposed to be subject to zero resultant bending couple and
vertical force, so that (Timoshenko & Woinowsky-Krieger 1959)

M, =0, N,—(1/a)dM,,/06=0, R=1.  (5.20)

The equivalent plate solution is taken to be the solution of classical thin pléte theory which
satisfies (2.31) and the boundary condltlons (6.19) and (5.20). This solution (Timoshenko &
Womowsky-Krleger 1959) is

. M R? 0 2 1 1 L
b= 167 Hz{2l R+2”+1+ cos20[R 47’_'_3 —417+3R2]}' (5.21)
The correspondmg stress in the equivalent plate (expressed in components referred to (7,0 z)
coordinates) is aM : G 1 3 17 )
F =22y - =
Trr =4I {1 BT °°S20[1 G+3R 4G+3 34]}’
. _ 3M:z 1 47 1 3 1
Gop = i {1 +-——cos 20[1 +4,'7_|_3 R 4?7_'|-3 EZ]}’ ) (6.22)
G = 3Mz in2611 __L [—2——3’— } |
0= T4t Gi+3|R R )
6.1 BeM@F+1) cos 20 |
[&e,] H@j+3) 0 )[sin 20]’ o 62
and the in-plane displacement components for the equivalent plate are
R 1 1 1
3 2ﬂ+1+R+COS20[R+4’l]+3R3]
i, 3M:z .
i | = e 1 T2 1 ‘ (5.24)
Up H :
| | | sin 20{R+4”+3[R Rg]}
From (5.21), we have
3M 1 2 cos26 1
2 7 —_— — — —
Vo = — e [2ﬁ+1 45 +3 'Rz]' (5.25)

The displacement and stress components in each layer are now given by substituting (5.21)
and (5.25) inio (4.33)—(4.36), and transforming to cylindrical polar coordinates, as

”g)' _ & 3M€?("7t+2) 1.3 4 1p) 2 (t) ) [COS 20}
. [ (t)] = [ﬁg]_ﬂeHz(417+3) R (s2i +3BY’zi + By'z,+ BY’) sin26 |’ (5.26)

51 Vol. 324. A
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3M€, 7,

1 2 cos260 1
@ — 5 1 2 @) ) _ 1
w® = d— 7 H'z( + Bz,+ B; )[277_'_1 13 Rz]’ (5.27)
(?) - ~ ~
L8 e BN D A e
mlow] Flg,) ARETHUT,
26
18Mej (7, + 2) cos
U S (A B2+ Bz, + BP) | —cos20 |, (5.28)
peET 44 +3) & ' sin 20
1 0-(‘) 3M€? @ @ ® [COS 20] .
m[cré?] /ZeH2(417+3)R3{2(22¢+B Oz) (n+1) +0, B+ (+2) BYY| o] (5.29)

Alternatively, o and o) can be expressed independently of the constants BY by means of
(4.55).

To specify the elastic constants of the equivalent plate we adopt the same laminate geometry
as in §54, namely, a symmetric laminate of three laminae of equal thickness having elastic
constants Ag, g, and Ay, #, in the inner and outer layers respectively. Then, from (3.12),

X = HNG+26X), i =Fu+26m), 7=2X/20 (5.30)
The constants B®, B® (a = 1,2, 3,4) are determined as follows. From (4.40),
B® =0, B® =0. ' (5.31)

From (4.41)—(4.45),
B =2, no(t+BY) = m(~$+B),

#ol(mo+1) +79, BY + (mo+2) B} = puy{—3(n, 4+ 1) + 7, B + (9, +2) B},
5(n,41) 47, B + (9, +2) B.Ssl) =0,
(10+2) G+ B +BY) = (1, +2) 3— B+ BY).

(5.32)

As the final condition, we impose the requirement (4.53) that the resultant bending moments
in the laminate coincide with those in the equivalent plate. This gives

Ho(Mo+2) (F5+3B5) + 201 (1, +2) G+3B5° +4B) = 0. (5.33)

These equations determine all the constants in terms of the material properties, and so complete
the solution. :

The shcar stress components o,, and 0, are most conveniently obtained dxrectly from (4 55)
and (5.25) a

[a}‘;’} __ Mefpy(no+1) (25— 1) —8py (1, + 1)} [cos 20]

o5 3AH (47 +3) R® sin26 |’

, - (5.34)
[052’]__Mﬂle(n1+1)(z1—1) (z,+5) [cos26]
o= “3AH(47+3) R® sin26 |

The solution described in this section has many features that are similar to those of the
analogous stretching problem which was described in §54. The leading terms in the expressions
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for u,, u,, w, 0,,, 04 and o, coincide with the expressions given by classical laminate theory.
The additional terms may be regarded as corrections to that theory. We note that the
corrections to u, and u, decay as R™%, and those to o,,, 04 and 0,4 as R™%. The magnitude of
the correction to the in-plane displacement is independent of &, and the correction to
0,,+ 0y is identically zero everywhere. :

Numerical investigation shows that, in the main, the results of this section are not sensitive
to the values of 5, and #,. For simplicity, we consider the case 5, = %, = 4. Then the difference
between the values of the in-plane stress components given by the present theory and the
corresponding values given by classical laminate theory is, from (5.28),

ol u G,y cos 20

o1 -2 |é,1 =0, | —cos20],
o | =5 | %o i

a¥ o0l sin 26

18Mp,e3(n,+2) (23 +3B02 + B2+ BY)

where 7= peiF(4n +3) R*

Table 1 gives values of oy H?/ Me? for 5, = § (which corresponds to Poisson’s ratio », = 0.3) and
Mo/ty =0.1, 1.0 and 10 at R=1, at scvcral values of z. A test of the accuracy of classical
laminate theory is to compare the values of o, with the stress given by classical laminate theory

TABLE 1. VALUEs OF 0,H?/Me®, SHOWING VARIATION OF THE HIGHER-ORDER IN-PLANE
STRESS AMPLITUDES THROUGH A THREE-LAYER SYMMETRIC LAMINATE WITH L€ = € = 3€ AND
vy = v; = 0.3, EVALUATED AT R = 1 FOR VARIOUS VALUES OF t/fty \

Molpty 0 1.0 10.0

mid-plane, z=0, z, =0 0 ) 0 0
. z,=1 -0.83 -0.25 2.87
interface, z = §,

z,=—1 —-8.34 -0.25 0.29
mid-lamina, z=§, 2, =0 —1.28 —0.16 —0.26
free-surface, z= 1, z, = 1 6.49 - 0.62 -0.29

which, in the ith layer, is of order p, M/H%ji. From table 1 we find that when Mo/, = 0.1, then
H¥jio,/p, M varies between —8.0¢* and 6.3¢%, but in the cases p,/p, = 1.0 and p,/p, = 10.0,
then H%io,/u, M is everywhere less than €* in magnitude. Consequently, in this respect, the
classical laminate theory appears to glvc a valid approx1matlon over a wide range of values of
the elastic constants, provided that €* < 1. o

Classical laminate theory gives no information about the shear stress components o, and
04, In the exact theory these are glvcn by (5. 34) We observe that these components decay as
R73, and that the magnitude 7= (o‘,z+a',,z)= of the shear traction is mdcpendcnt of 6. In
figure 2 we show the variation with z of TH?/Me at R = 1, with 9, = 7, = §, and p,/p, = 0.1,
1.0, 10.

As an example of a problem in which displacement boundary conditions are imposed, we
consider briefly a plate containing a circular hole subject to the same conditions (5.19) a
R—> o0, but clamped at R = 1, so that . '

=0, dW/or=0 at R=1. | (5.35)

§1-2
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o/py=10

N>
(=]
T

0 0.2 04 06 Q.S 10 1.2 14
normalized shear stress—>

FiGURE 2. Variation of the amplitude of H?%s,,/ Me and H?¢,,/ Me through a three-layer symmetric
laminate with €, = ¢; = }¢ and v, = »; = 0.3, evaluated at R =1.

The corresponding equivalent plate solution is

 3M [R—1-2lR [, . 1]' } | ‘
e
Hence, in this case, ' Y 1 9
2 e e
VO = = e [2ﬁ+1+R2 * 20]' o0

Consequently, i and V@ have the same forms as in (5.21) and (5.25), but with different values
of the coefficients. The expressions for the displacement and stress components are therefore of
the same forms as in the previous problem, with appropriately modified coefficients. For the
displacement boundary value problem it is preferable to adopt (4.51) rather than (4.53) to
determine B{; therefore the condition (5.33) is replaced by

B® =0. | | (5.38)

The remaining analysis and discussion follow straightforwardly as in the previous problem, and
we omit the details.

~6: DISCUSSION OF THE EXACT LAMINATE THEORY

As was stated prcv1ously, when the constants S®, BY (a=1,2, 3,;8=1,234;i=0,1,.
N) have been determined in the manner described in §4 the solutions given in that scctxon are
exact three-dimensional solutions of the equations of isotropic linear elasticity. In order to
construct such solutions it is only necessary (a) to determine an appropriate solution of the two-
dimensional thin-plate equations (the solution for the ¢ equlvalent plate’) and (b) evaluate the
constants 8§ and BY. These constants depend only on the thicknesses of the laminae and on the
elastic constants of the materials which form the laminae, and are completely independent of
any particular solution under consideration. Thus, for any particular laminate with given lay-
up and elastic properties, the constants may be evaluated once and for all. Explicit formulae
for the S’ and BY are given in §4. Although these formulae appear cumbersome when they
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are expressed algebraically, especially for laminates with a large number of laminae, the
numerical evaluation of the constants by using the recurrence relatlons which they satlsfy is
very simple and straightforward.

Having determined the equivalent plate solution and the constants § and B, it becomes
a matter of mere substitution in the formulae of §4 to write down the correspondmg exact
three-dimensional solution. The solutions given in §5 show the simplicity of the procedure.
Even if the equivalent plate solution is a numerical one (obtained, for example, by finite element
or finite difference methods) the three-dimensional solution can be constructed from it by
appropriate numerical differentiations of the dlsplaccment given by the equlvalent plate
solution. ‘ : :

In the exact solution, the.leading terms in € in the displaccmcnt and the in-plane stress
components are identical to the corresponding quantities given by classical laminate theory.
The remaining terms may be regarded as a correction to classical laminate theory, and are ‘a
measure of the accuracy of that theory. In addition, the exact theory yields the values of the
shear stress components 7, and o, about which classical laminate theory gives no information,
and in particular of the 1nter-lam1nar shear stress, which in practlce may be an 1mportant
factor in causing the onset of delamination.

Neither classical plate theory nor the exact theory is capable of satisfying edge boundary
conditions point by point, and can only do so in an average manner. In this average sense the
standard boundary value problems outlined at the end of §2¢ can be solved by the present
theory. The equivalent plate solution is constructed, by any of the methods available for solving
two-dimensional elasticity problems, to satisfy the specified boundary conditions and then,
with the appropriate choice of S and B{?, the three-dimensional solution will conform to the
same averaged boundary conditions as the equivalent plate solution. If edge boundary con-
ditions are specified point by point, there will be a boundary layer region adjacent to the edge
in which the solution does not conform exactly to the boundary conditions; by invoking Saint-
Venant’s principle, it can be argued that this layer penetrates to a distance only of the order
of the plate thickness.

We also observe, without presenting details, that the results of §4 can be expressed very
conveniently and concisely in terms of complex variable notation. For stretching deformations
the equivalent plate displacement components # and 7 may be expressed in the conventional
way (as described, for example, by Muskhelishvili (1963), Green & Zerna (1954) or England

(1971)) as
3+21 M-
L5 20~ -0,

24 (d+id) =
where the complex potentials £(£) and w({) are analytic functions of { = x+iy, and bars here
denote complex conjugates. Then 4 and the derivatives of #, # and 4 which occur in (4.6)-(4.8)
are easily expressed in terms of 2({), w({) and their derivatives. Similarly for bending
deformations, the biharmonic function % can be expressed as

O+ +6)+9(0),

where ¥({) and ¢({) are also complex potentials. The derivatives of @ which occur in
(4.33)—(4.36) are readily expressed in terms of derivatives of ¥({) and ¢({).
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